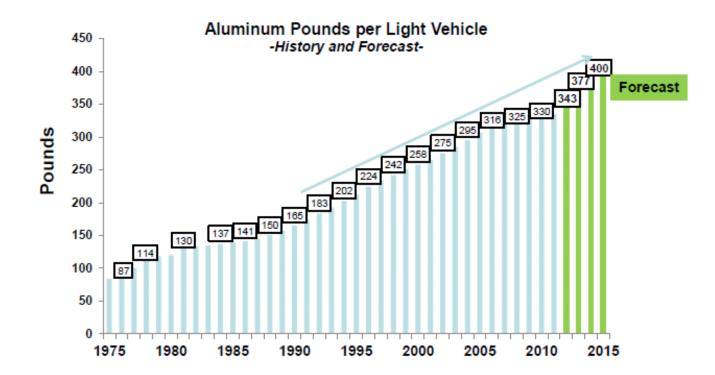
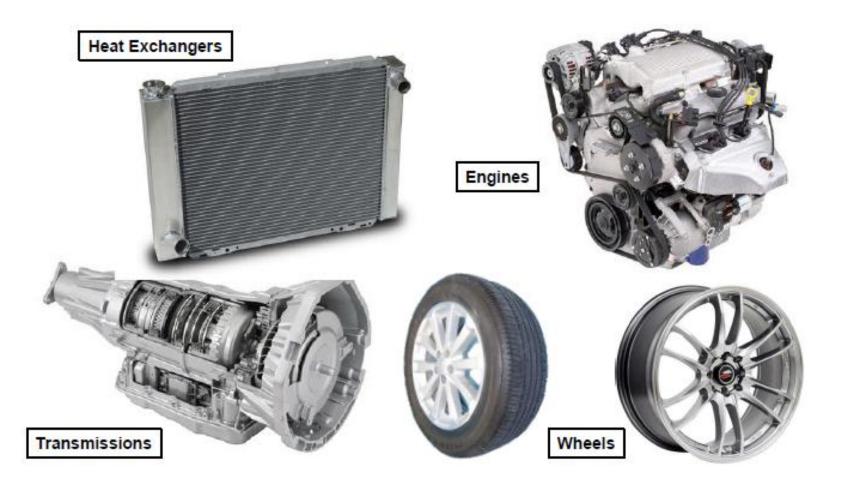


The Future of Aluminum Use in the Auto Industry

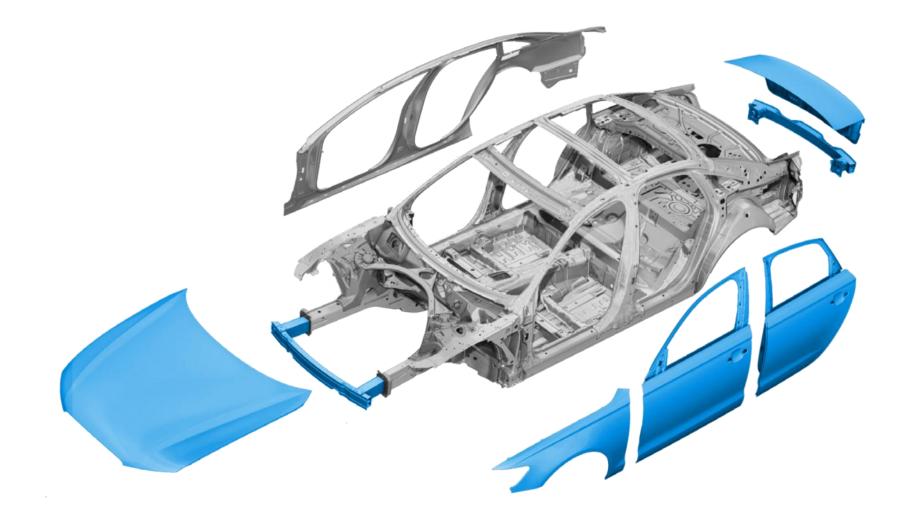
October 31, 2013


- Aluminum is used in most cars and trucks (where and what extent)
- Fuel economy legislation (NA and Global)
- Technologies available to reach fuel economy improvements
- Design Changes from Steel to Aluminum
- Possible directions for aluminum implementation
- Impact of aluminum use
- Conclusions
- Questions

IMPACT OF MANDATES ON 2015/2016 ALUMINUM CONTENT

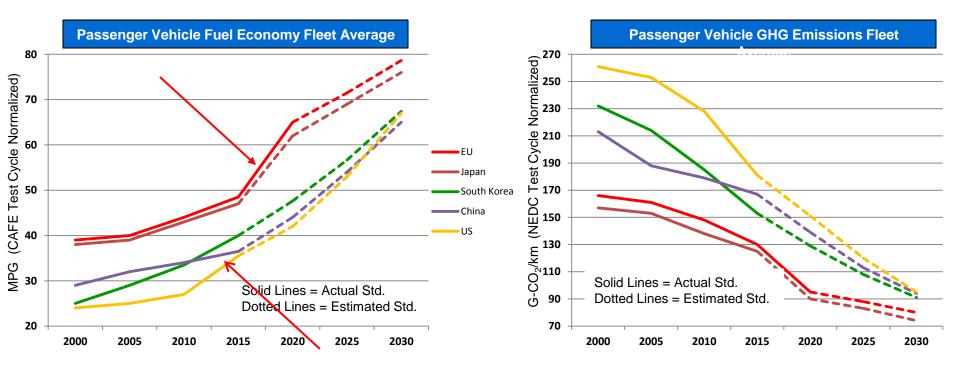

DUCKER WORLDWIDE ducker.com

After a short period of slow growth, North American light vehicle aluminum content growth will take a large step back toward the long term trend line in 2012, and march to 400 pounds per vehicle by 2015/2016



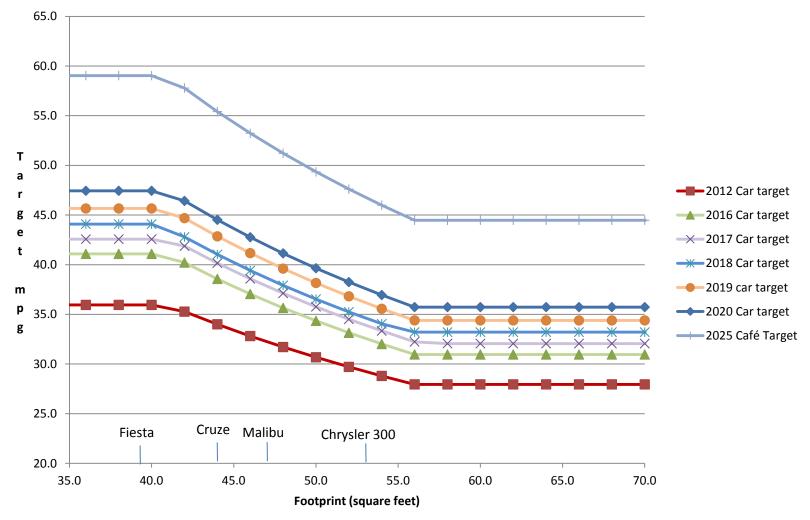
Universal Aluminum Use (or at least very common)

Closures and Body in White (BIW)

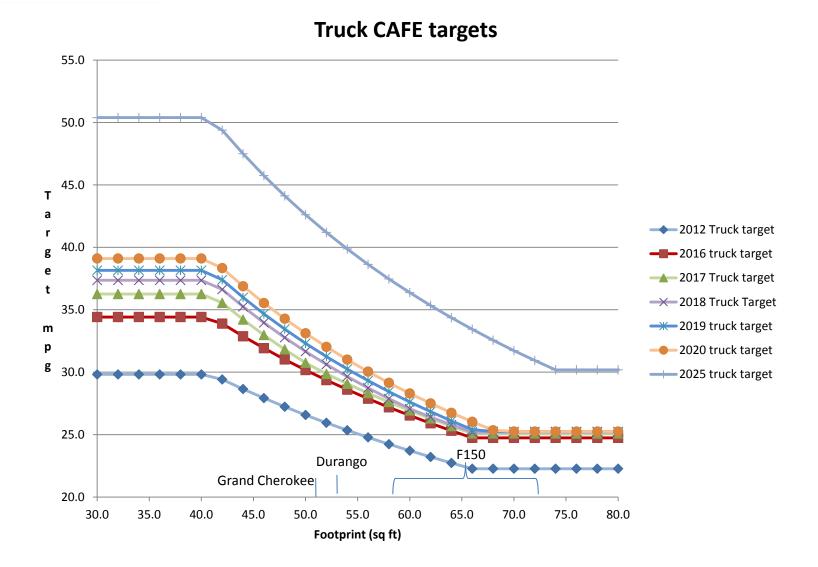


Fuel Economy Legislation

Regulations only get tougher moving forward


Conversion factor between fuel economy and CO₂ emissions:

- 8887 g CO₂ per gallon of gasoline
- 10180 g CO₂ per gallon of diesel



US Corporate Average Fuel Economy (CAFE) standards are size based, so each vehicle has a fuel economy target based upon its wheelbase and track

Fleet fuel economy is calculated using a harmonic mean, not a simple arithmetic average. For a fleet composed of four different kinds of vehicle A, B, C and D, produced in numbers n_A, n_B, n_C and n_D, with fuel economies f_A, f_B, f_C and f_D, the CAFE would be:

 $\frac{n_A + n_B + n_C + n_D}{\frac{n_A}{f_A} + \frac{n_B}{f_B} + \frac{n_C}{f_C} + \frac{n_D}{f_D}}$

For example, a fleet of 4 vehicles getting 15, 13, 17, and 100 mpg has a CAFE of slightly less than 19 mpg:

$$\frac{4}{\frac{1}{15} + \frac{1}{13} + \frac{1}{17} + \frac{1}{100}} = 18.83$$

Penalty for missing CAFE requirement is \$5.50 per each 1/10 of MPG missed.

Aero Drag Reduction Low Drag Brakes Low Rolling Resistance Tires Mass Reduction (3.5 to 8.5% of Curb Weight) Mass Reduction (1.5% of Curb Weight) Belt mounted Integrated Starter Generator Improved Accessories Electric Power Steering Dual Clutch or Automated Manual Transmission 6/7/8-Speed Auto. Trans with Improved Internals Exhaust Gas Recirculation (EGR) Boost Turbocharging and Downsizing **Combustion Restart** Stoichiometric Gasoline Direct Injection (GDI) Discrete Variable Valve Lift (DVVL) on OHV VVT - Dual Cam Phasing (DCP) **Engine Friction Reduction** Low Friction Lubricants

5.5 - 9.5% 14 -25% 2 3 Δ 5 6 7 0 1

3.5 - 6%

Ref: Corporate Average Fuel Economy for MY2012-MY2016 Passenger Cars and Light Trucks – Final Regulatory Impact Analysis, NHTSA, March 2010

% Improvement in Fuel Economy

	Steels	Aluminum alloys	Magnesium alloys	Polymers	Polymer Composites	
Available product forms	Sheet, bar, single hollow tube, casting, forging	Sheet, bar, extrusions, casting, forging	casting	Sheet, molding, extruded shapes	Sheet, molding, pultruded shapes	
Density (g/mm3) x10-2	0.72 to 0.80	0.26 to 0.27	0.27 0.19 0.11 to 0.22		0.17 to 0.19	
Modulus (GPa)	207	69 to 73	45 0.89 to 3.3		3.4 to 34	
Yield Strength (MPa)	172 to 900	68 to 590	206 41 to 90		97 to 145	
Tensile Strength (MPa)	365 to 1200	310 to 620	310	55 to 1124	110 to 172	
Elongation (mm/mm)%	10 to 33	6 to 20	15	NA	NA	
Poisson's Ratio	0.3	0.33	NA	NA	NA	
Thermal expansion (mm/mm/°C)	10.8 to 19.4	19.4 to 24.5	25	81 to 216	16.7 to 90	
Thermal conductivity (W/(m.°K))	36 to 52	159 to 216	100	0.2 to 0.5	0.2 to 0.8	
Corrosion resistance	Medium	High	Low	High	Low	
Useable temp. range (°C)	315	150	120 120		150	
Joining methods	Arc & spot welding, bonding, mechanical	Arc & spot welding, bonding, mechanical	Bonding, mechanical	Bonding, mechanical	Bonding, mechanical	
Formability	Good	Fair to Good	-	Poor	Poor	
Relative cost	Low	Medium	Medium Low		Medium	

Potential Weight Savings with Aluminum D-Class vehicle

	Steel (lb)	Aluminum (lb)	Wt. Saving (lb)	% saving
Hood	56	28	28	50
Fenders	16	8	8	50
Decklid	38	19	19	50
Doors	160	95	65	40
BIW	720	430	290	40
Total	990	580	410	41

Primary and Secondary Weight Savings

- Primary weight savings is the actual savings associated with changes to the Body and closures via material changes, design optimization and thickness reductions.
- In all cases, a primary weight savings leads to a secondary weight savings:
 - A lighter vehicle allows for smaller suspension components, brakes, engine, etc. with comparable performance of the base vehicle
 - Typically, 30% of the primary savings can be obtained as secondary savings in cars 1.
 - In light trucks, 10-15% of the primary savings is achievable (because of towing and cargo requirements).
- At the specification stage, the weight target for the secondary systems must be reduced to reflect the primary weight savings.
- A 10% REDUCTION IN CURB WEIGHT RESULTS IN A 6 TO 7% FUEL ECONOMY IMPROVEMENT (INCLUDING ENGINE DOWNSIZING)
- 1. AZT reference

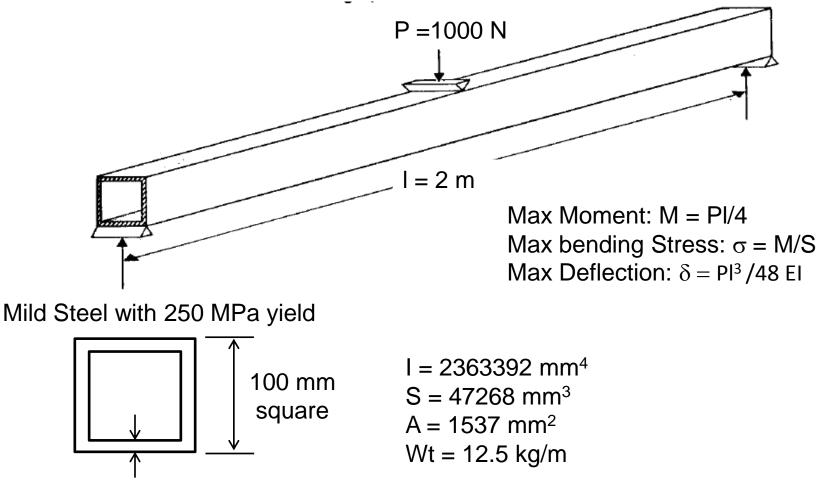
Design Changes from Steel to Aluminum

To Match Bending Stiffness:

 $\mathsf{E}_{\mathsf{alum}} \operatorname{I}_{\mathsf{alum}} = \mathsf{E}_{\mathsf{steel}} \operatorname{I}_{\mathsf{steel}}$

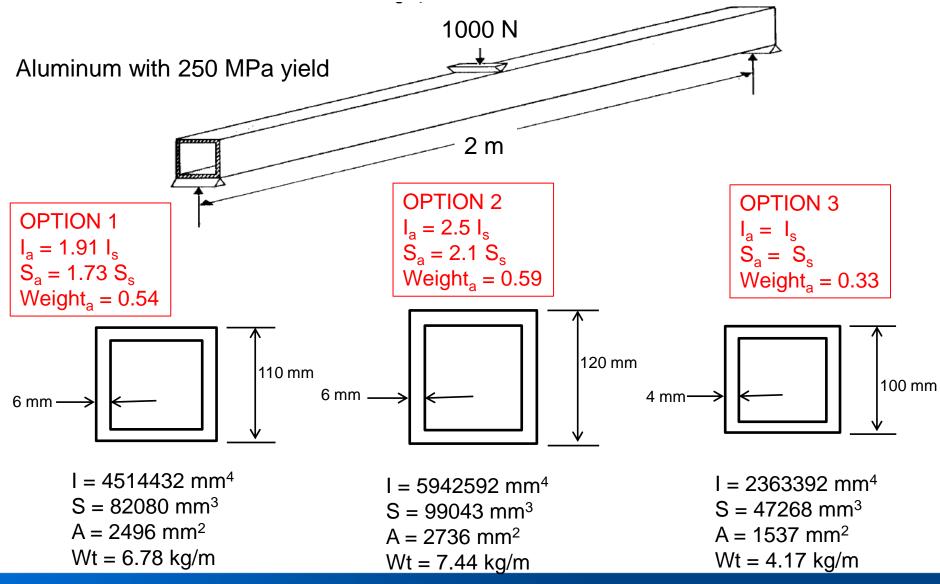
Since Modulus of aluminum is 1/3 of steel

 $I_{alum} = 3 I_{steel}$


Normally, we target moment of inertia of aluminum parts at roughly 1.5 to 2 Isteel

To Match Bending Strength:

 $S_{alum} \sigma_{alum} = S_{steel} \sigma_{steel}$


$$S_{alum} = S_{steel} (\sigma_{steel}, \sigma_{alum})$$

Simple Example: Steel Box Beam Simply Supported

4 mm thickness

Simple Example: Aluminum Box Beam Simply Supported

Steel to Aluminum Conversion Formulas

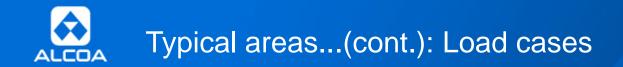
For beam bending stiffness (Square cross section)

$$\frac{t_a}{t_s} = \left(\frac{b_s}{b_a}\right)^3 \left(\frac{E_s}{E_a}\right)$$

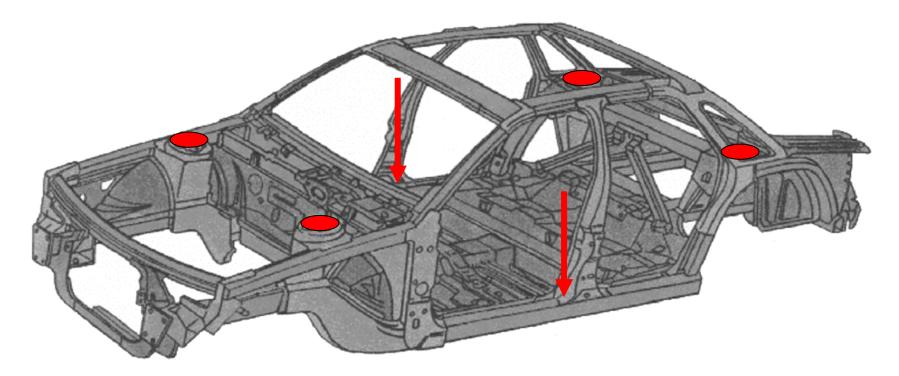
or

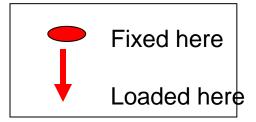
 $\frac{b_a}{b_s} = \left(\frac{E_s t_s}{E_a t_a}\right)^{\frac{1}{3}}$

For beam bending stress (yield of extreme fiber in Square cross section)

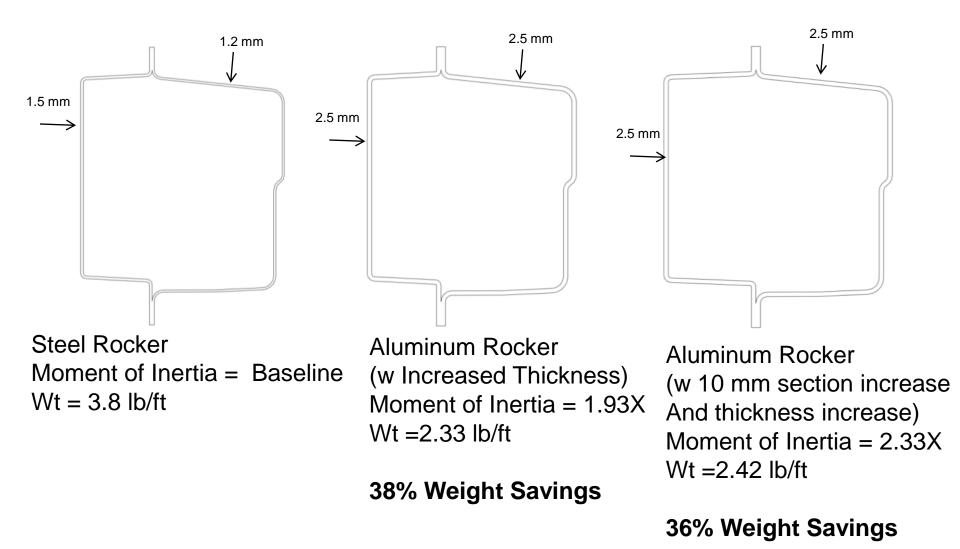

$\frac{t_a}{t_s} = \left(\frac{b_s}{b_a}\right)^2 \left(\frac{\sigma_{ys}}{\sigma_{ya}}\right)^2$
or
$\frac{b_a}{b_s} = \left(\frac{t_s \sigma_{ys}}{t_a \sigma_{ya}}\right)^{\frac{1}{2}}$

A list of the symbols used in the equations is given below. Subscripts "a" and "s" have been used to identify properties for aluminum and steel, respectively.


- σ_u = Ultimate strength
- σ_{v} = Yield strength
- E = M odulus of elasticity
- I = M oment of inertia
- S = Section modulus
- b = Side width of a hollow rectangular section
- t = Thickness of a hollow rectangular section or thickness of sheet


 δ = Crush distance

19


Stiffness: Bending

Rocker Comparison

University of Aachen Study

Stiffness Versus Strength Driven Components

Aachen Study

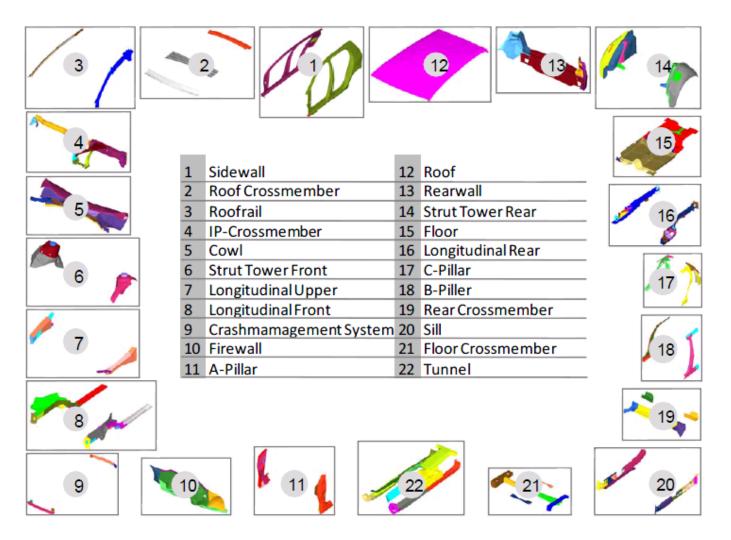
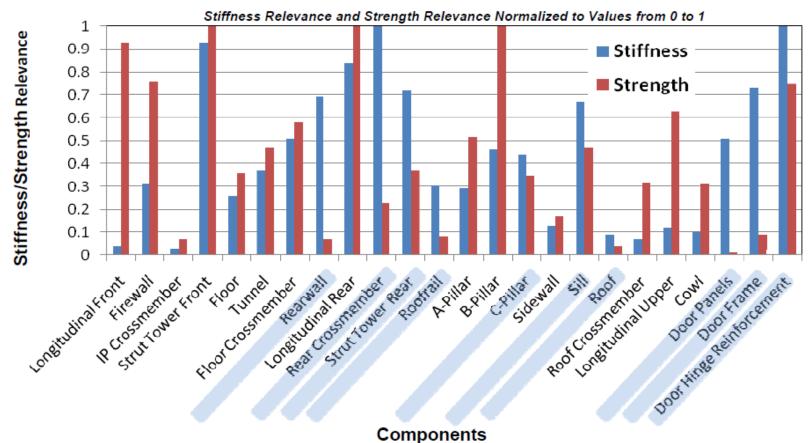
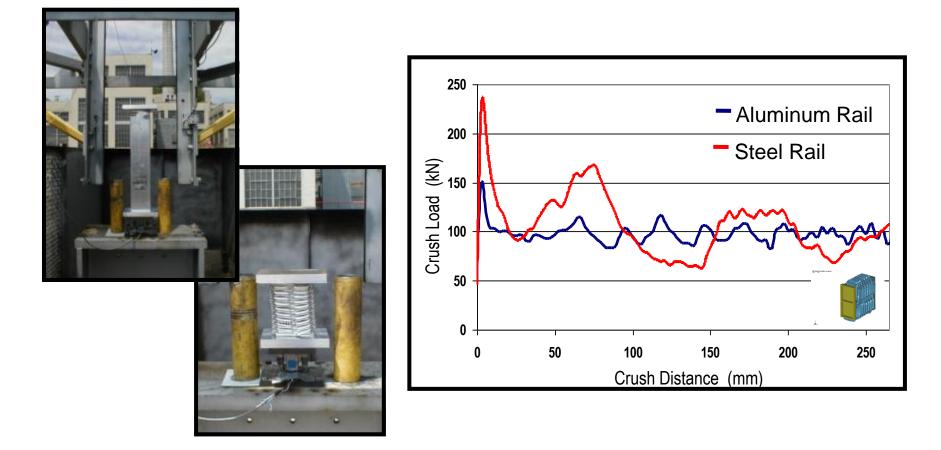



Fig. 2-2: Subdivision of body-in-white into 22 components

Results Stiffness vs. Strength Relevance


For 38% of the componets investigated stiffness relevance is higher than strength relevance

 80% of modeling results meet expectations of Car Body Experts of 4 European OEMs source: ika - University of Aachen and the European Aluminium Association (EAA)

10 24

ALCOA Safety Solutions – Axial Crush

56% Mass Savings (Rel. Mild Steel)
38% Mass Savings (Rel. 800 MPa HSS)

Steel to Aluminum Conversion Formulas

For energy absorption in axial crush:

For the same mean load

$$\frac{t_a}{t_s} = K \left(\frac{b_s}{b_a}\right)^{\frac{1}{5}} \left(\frac{\sigma_{ys}}{\sigma_{ya}}\right)^{\frac{2}{5}} \left(\frac{E_s}{E_a}\right)^{\frac{1}{5}}$$

or

$$\frac{b_a}{b_s} = K^5 \left(\frac{t_s}{t_a}\right)^5 \left(\frac{\sigma_{ys}}{\sigma_{ya}}\right)^2 \left(\frac{E_s}{E_a}\right)$$

where K = strain rate effect function= 1.16 for 48 km/h crash (steel to aluminum ratio)

Aluminum Alloys

Alloy Series	<u>Major Element</u>	<u>Thermal Treatment</u>	Applications
1XXX	99% Pure Aluminum	Non-heat treatable	Non-structural-heat exchangers electrical conductors
2XXX	Copper	Heat treatable	Structural - aerospace
3XXX	Manganese	Non-heat treatable	Non-structural, beverage cans
4XXX	Silicon	Heat treatable	Non-structural - filler wire
5XXX	Magnesium	Non-heat treatable	Structural-auto/marine/tanks
6XXX	Mg + Si	Heat treatable	Structural-auto/general purpose
7XXX	Zinc	Heat treatable	Structural - aerospace
8XXX	Other Elements	-	Electrical conductors

Alloy Strengthening Mechanisms

Heat Treatable Alloys

Precipitation Hardening

- Precipitate volume fraction (alloy and heat treatment)
- Precipitate size (aging practice)

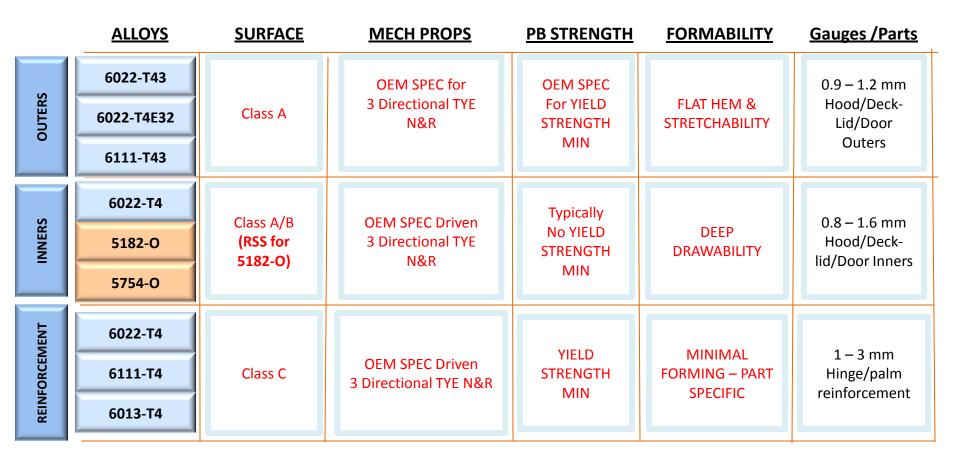
TYPICAL ALLOY SYSTEMS

2000, 6000, 7000

Non-Heat Treatable Alloys

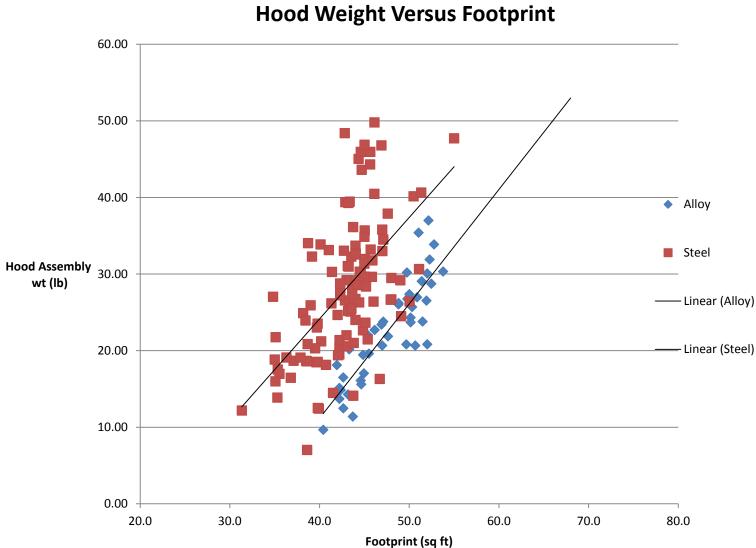
- Solid Solution Strengthening
 - Amount of solute (alloy)
 - Type of atom
- Work Hardening
 - Solute atoms (alloy)
 - % cold work
 - Deformation temperature

TYPICAL ALLOY SYSTEMS

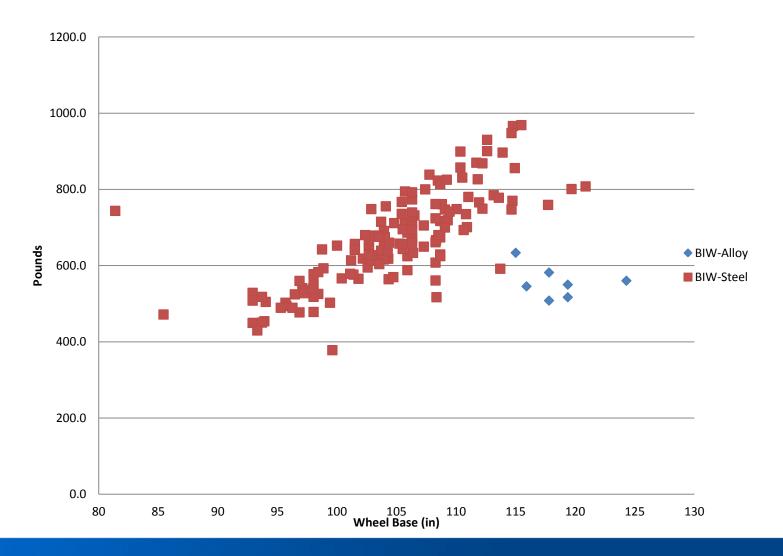

3000, 5000

- **F** As-Fabricated no property limits
- **O** Annealed fully softened
- H Strain-Hardened (wrought products only)
- **W** Solution Heat-Treated and Quenched
- T Thermal Treatment (Excluding F, O, or H)

Alcoa Automotive Alloy Options


Alloy	Si	Fe	Cu	Mn	Mg	Cr	Ti	V
Aluminum Association Composition Ranges (in Wt. %)								
6022	0.8 - 1.5	0.05- 0.20	0.01- 0.11	0.02- 0.10	0.45- 0.70	0.10	0.15	
6016	1.0 - 1.5	0.50	0.20	0.20	0.25 -0.6	0.10	0.15	
6181A	0.7 – 1.1	0.15-0.50	0.25	0.40	0.6 - 1.0	0.15	0.25	
6014	0.3 - 0.6	0.35	0.25	0.05 - 0.2	0.4 -0.8	0.20	0.10	0.05-0.2
6451	0.6 - 0.1	0.40	0.40	0.05 - 0.4	0.4 -0.8	0.10	-	0.10
6111	0.6 - 1.1	0.40	0.50 - 0.9	0.10 -0.45	0.50 -1.0	0.10	0.10	
6013	0.6 - 1.0	0.50	0.6 – 1.1	0.20 - 0.8	0.8 - 1.2	0.10	0.10	
5182	0.20	0.35	0.15	0.20 -0.50	4.0-5.0	0.10	0.10	
5754	0.40	0.40	0.10	0.50	2.6-3.6	0.30	0.15	

Note: Single numbers refer to the maximum values


Aluminum Auto Applications

BIW Weight Versus Wheel Base - Steel Vs Aluminum

- Some technologies are a given such as low friction lubes, aero improvements, electric power steering.
- Engine and transmission improvements are critical to reaching Café targets, but...
- Weight reduction without significant vehicle downsizing allows for additional engine downsizing (along with turbos) to improve fuel economy without reducing performance.
- Aluminum hoods are common place and are continuing to grow, more closures will become aluminum.
- Body applications are the next area for aluminum implementation after closures typically only on the larger vehicles. Some OEMs will focus on all aluminum and others will use a hybrid material (steel/aluminum) approach.
- The larger trucks (GVW > 8500 lb) are not covered by CAFE but by the Truck emissions standard taking effect in 2014. This standard is expressed as CO₂ per ton mile.